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Lecture 6. Typical determinate perturbations (actions) and corresponding 

responses 

 6.1   Typical determinate perturbations (actions) and corresponding responses 

1. The Unit Step Function       

The mathematical description of    the Unit Step Function   is of the form: 
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Fig. 2.6.    The unit step function 

In practice, the unit step function represents instantaneous signal value change, 

for example, momentary electric generator load change. 

The unit step function response, often called the Step Response, is a transient 

function  h(t). Physically,  h(t) is a transient signal observable at the output of a link, 

when the unit step function occurs at the input of the link under zero initial 

conditions.                             
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Fig. 2.7. Transient at the output of the first order aperiodic link 

The Laplace transform of the unit step function:  
s
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The Laplace transform of the step response:  )()}({ sHthL  . 

The transfer function of a link is by definition  
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Mathematically, transient function is defined as solution of differential 

equation under zero initial conditions. 

 

2. The Impulse function 

 

The unit impulse function, or the unit pulse, denoted as  δ(t)  (delta-function) is 

a derivative of the unit step function, )('1)( tt


 . The delta-function is equal to zero 

everywhere except the point  t=0, where it tends to infinity. It is a generalized form 

of a high-amplitude, short-duration pulse. 

           The mathematical description it is: 

                         θin(t) =









otherwise

tat
t

,

0,0
)(                                      (2) 

 

                                         θin(t) 

 

                                           

                                     

Fig. 2.8. The delta-function δ(t)   

  One of the basic properties of the delta-function is that 
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e.g., its graph covers very narrow region of a unit area about  t = 0. 

Examples: air-pocket, short-duration short circuit current, momentary high 

stress on a motor axle. 

The Laplace transform of the delta-function: 1)}({ tL  . 

Physically, the delta-function response at zero initial conditions is the weight 

function. Mathematically, the weight function is a derivative of the step response 

transient function:     
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Fig. 2.9.  The weight function 

The delta-function transform is constant, so, from the transfer function

1)s(W)s(K  . This is an extremely important property used in control theory. 

Solving the identification problem experimentally,  δ(t)  is applied to the input of a 

system and  K(t)  is obtained at the output; then after substituting )s(W = K(s)  and 

applying the inverse Laplace transformation a differential equation of the system is 

obtained, e.g. )()()( ssWs inout   ;    )()()( 11 ssWLsL inвout    .  

The step response and the weight characteristics are called time characteristics. 

3. The Harmonic (Sinusoidal) Perturbation 

Mathematically, it has the form:  

                                                            tatin  sin)(                             (4) 
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Fig. 2.10.  The harmonic input function 

The response of a system is considered only in steady-state, after the transient 

have already took place, and is called the Generalized Frequency Characteristic 

(Response). It can be obtained after application of the Fourier Transformation to (4). 

Formally, the generalized frequency characteristic can be obtained from the transfer 

function  W(s)  substituting  s = jω: 

                                      
)()()()( 
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where )j(W)(A 


  is the magnitude of  W(jω)  and is called the Gain-Frequency 

Characteristic (GPFC);  φ(ω)  is called the Phase-Frequency Characteristic (PhFC). 

Note, however, that the same equation (5) can be rearranged in other way: 

)(Im)(Re)()( )(   jWjjWeAjW j  , 
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Conclusion: above we have considered three basic types of determinate input 

perturbations and corresponding link responses. Important thing to mention about is 

that a particular system property is determined by relations between its own and 

)(tin
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input signals time characteristics. The next topic for discussion is the frequency 

characteristics of dynamic systems and their properties. 

 

6.2   Frequency-domain analysis (characteristics) 
 

1) Consider generalized frequency characteristic in complex plane, which is 

also called Gain-Phase Frequency Characteristic (GPhFC).  

 

GPhFC: )(Im)(Re)()()( )(  


jWjjWeAjWsW j

js



. 

 

It represents geometrical position of vectors’ ends (a hodograph curve or 

locus) corresponding to frequency transfer function (5) having frequency changing 

from zero to positive infinity. Real part )(Re jW  (fig. 2.11) is placed on “x” axis, 

imaginary part )(Im jW  is placed on “y” axis, 0 . At negative frequency 

change 0   flip image is produced, since the characteristic is symmetrical 

about 0. 

 

                                                              φ 
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                                                 ω=∞       

 

Fig. 2.11. Gain-Phase Frequency Characteristic 

2) Gain-Frequency Characteristic shows how a link transmits signals of 

various frequencies. By definition, 

GFC: ))((Im))((Re)()( 22  jWjWjWA 


. 

)(A  is a number describing input-to-output amplitude ratio 
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frequency;  ср0    is frequency bandwidth. 
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Fig. 2.12. Gain-Frequency Characteristic 

GFC (fig. 2.12) is plotted as frequency changes from 0 to  , i.e. 0 ; 

negative change gives flip image as the characteristic is symmetrical about 0, i.e. 

0  . 

3) Phase-Frequency Characteristic. By definition, 

PhFC:  
)(Re

)(Im
)(






jW

jW
tgarc



 . 

Phase-Frequency Characteristic represents phase shifts introduced by a link 

under various frequencies. As a rule,  )(  is always lagging (of negative value); 

naturally phase lag increases with frequency. 

        

 

  -π                                            

                                            0                                          ω 

 

 

Fig. 2.13. Phase-Frequency Characteristic (PhFC) 

This characteristic is plotted exactly as GFC and PhFC, with one minor 

exception: in control theory there is an agreement that for PhFC negative phase shift 

is placed on positive “y” axis, and vice versa. 

 

4) Logarithmic Frequency Characteristic 

Let us take the logarithm of frequency transfer function (2.35): 

 

                              )()(ln)(ln)(ln )(   jAeAjW j  . 

 

For practical purposes it is more convenient to use common logarithm and 

prepare Logarithmic Gain-Frequency (LgGFC) (fig. 2.15) and Logarithmic Phase-

Frequency (LgPhFC) Characteristics (fig. 2.16) separately. For LgGFC preparation 

we need to find )(lg20)(lg20)(  AjWL 


(common logarithm).  Unit of  )(L  

is a decibel, and unit of frequency logarithm is a decade. 

LgGFC is plotted in the following coordinate system (fig. 2.14): 
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Fig. 2.14. LgGFC coordinate system 

Notes: 

a) frequency ω is plotted on “x” axis in logarithmic scale, not in 

lg(ω); 

b) since lg(0) = -∞ than “y” axis can be placed anywhere (is 

floating); usually it is placed  in such a way that the whole graph will lie to the 

right of it. 

The unit of logarithm increment is one decade, i.e. tenfold of frequency. 

Asymptotical  LgGFC  is plotted as polyline; knee frequency  
i

i
T

1
  

corresponding to a salient point is called connecting (mate) frequency ( ni ,1

). 

 

 

 

 

 

 

 

Fig. 2.15. Logarithmic Gain-Frequency Characteristic (LgGFC) 

Several useful properties  of   LgGFC  deserve should be mentioned: 

a) compactness of presentation; 

b) simplicity of linear characteristics approximation. 

Logarithmic phase-frequency  characteristic is a frequency logarithm 

dependence of φ(ω). This characteristic is not used in practice, since it is dual of 

PhFC (fig. 2.16). 

60 

50 

40 

30 

20 

10 

101 102 103 

 [dec] lg

 )(L  [db] Even
ly d

ivid
ed

 scale
 

101 102 103 

1  1      2    2    3   3 

 

 [dec] 

-20 

-40 

-60 

-80 

 



7 
 

 

 

 

 

 

 

 

 

 

Fig. 2.16. Logarithmic Phase-Frequency Characteristic 

The next topic shows characteristics typical dynamic elements in time and 

frequency fields. Further we will show these characteristics only for aperiodic link of 

the second order. You must obtain the same characteristics for other typical dynamic 

elements yourself. 

Aperiodic Link of the second order 

Mathematical description has the following form: 

   tKtTT inoutoutout    22 . 

The transfer function is 
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Now time characteristics follow. 

Transient function (fig. 2.17):    
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t h(t) 

0 K(1-(c1+c2); K  0; c1+c2 = 1; 

Ti < 1; 

  1. 

Weight function (fig. 2.18):  
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        Fig. 2.17. Transient function link                  Fig. 2.18. Weight function link 

Here go frequency characteristics. 

Gain-phase frequency characteristic GPhFC (fig. 2.19):   
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                                          Fig. 2.19 GPhFC link 

 

Gain-frequency characteristic GFC (fig. 2.20):   
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             Fig. 2.20. GFC link                                            Fig. 2.21. PhFC link 

Phase-frequency characteristic PhFC (fig. 2.21):  
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Logarithmic gain-frequency characteristic LgGFC (fig. 2.22):   
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Fig. 2.22.  LgGFC link 

Connecting frequencies are: 
1

1

1

T
 , 

2

2

1

T
 ; ω1 < ω2 since T1 > T2. 

A rule for asymptotic LgGFC plotting: it is drawn as a polyline with slope ±20n 

[db/dec] decibel per decade, where  “n”  is power of  “s”  in open-loop system 

transfer function W(s) . 

In conclusion it is necessary to mark that by means of the typical dynamic 

links (connected sequentially, parallel, etc.) it is possible to provide any dynamic 

system. Using rules of algebra of structural conversions, we receive transfer function 

of the whole system. 
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Properties of system are not the amount of properties of the separate links 

which are logging in though, naturally, each link surely contributes to the general 

properties of the system. In it the integrity of system is shown. 


